
AE 423 — Regression Analysis

Guodong Chen

Winter, 2019

1 Introduction

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships
among variables [1]. More specifically, we are interested in how the value of the output (target,
response) changes when the inputs (features, states) are varied. In a more statistical point of
view, regression analysis estimates the conditional expectation of the outputs given the inputs.

Regression analysis is widely used in engineering for prediction and forecasting (sometimes called
model or surrogate). For example, we can relate the lift coefficient of an airfoil cl to the angle of attack
α (thin airfoil theory, Figure 1), or force for stretching a spring F to the distance that the spring
stretches ∆x (Hooke’s law). More interestingly, we can find a relation (build a model) between the
the inputs and output of a more complex system. For example, instead of solving the Navier-Stokes
equations every time which is extremely expensive, we can relate the aircraft shape (inputs) to the
drag/lift (outputs) at cruise with a regression model (widely used in surrogate-based optimization,
see Figure 2. The surrogate-based optimization is fast and cheap only for the optimization side, the
surrogate building process is expensive).

Angle of attack, α(deg) Lift coefficient, cl
0.1904 0.0425
0.5511 0.0767
0.7387 0.0080
1.2137 0.1300
1.5541 0.1940
2.0318 0.1817
2.5218 0.2676
2.7390 0.3329
2.9900 0.3147
4.0685 0.3845
· · · · · · 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

Data

Regresssion model

Figure 1: Lift coefficient cl v.s. the angle of attack α of an airfoil

2 Regression Model

In regression analysis, we want to find the map f , parameterized by θ, from the inputs (features)
X ∈ Rn to a continuous output (target) Y ∈ R, f : X 7→ Y, based on our observations or data
(The notation and some explanations here follow Andrew Ng’s lecture notes [2]). Often, the form of
the function f is specified based on knowledge about the relationship between Y and X, or chosen
to have good approximation power. However, the parameters θ ∈ Rd in function f are unknown,
which should be inferred from the data. For instance, we have a set of m realizations of X and Y,
S = {(xi, yi); i = 1, 2, ...,m}, which is often called training set. Each sample in the training set

1

kskascbacAircraft Design

kskascbacFluid Simulation
CFD

kskascbacStructure Simulation
CSD

kskascbacOptimization
Algorithm

Displacement

Stress

Lift, Drag

Pressure Distribution

Expensive

Slow

kskascbacRegression model/
Surrogate model

Aerodynamic Analysis

Structure Analysis

Fast Cheap

Figure 2: Regression model in aircraft optimization

has an input vector xi of dimension n containing n independent features, yi is the corresponding
output (target), a scalar value. Then the regression process (or often called learning process by the
machine learning community) can be stated as: find the optimal set of parameters θ∗ such that the
overall difference (error) between the model prediction f(xi; θ∗) and the observation yi is minimized.
A diagram of the regression/learning process is shown as below.

Training Data

e.g. Angle of attack

Mach number

e.g. Lift

Error

Optimize

Figure 3: Regression/Learning process given a training data set

2.1 Linear Regression

We will start with the simplest type of the regression models: linear regression, in which the form of the
regression function f is a linear function. Although linear regression is fairly simple, it’s a very useful
model in data analysis, and it can be easily extended to more complex models. With this setting, our
linear regression model can be written as 1

f(x; θ) = θ0 + θ1x1 + θ2x2 + ...,+θnxn, (1)

where θ = [θ0, θ1, ..., θn]T are the parameters of our linear model. To simplify our notation, we also
introduce the convention of letting x0 (this is the intercept term), i.e., x = [1, x]T , so that the

1Linear regression or linear model is not necessary a line or a hyperplane, e.g. if the features is x = [x1, x21, x2, x3]T ,
then linear regression model is linear for x2 and x3, while it is quadratic for x1. But if we consider x1 and x21 as two
different features, the model is linear for these two features.

2

regression model can be written as

f(x; θ) =

n∑
i=0

θixi = θTx, (2)

here both θ and x are vectors of dimension n, where n is the dimension of the inputs. Note: xij means

the jth component (feature) of ith data in the training set.
Now, given a set of training data (observations), how can we pick, or lean the optimal parameters

θ? One natural idea is to minimize the difference, often called the error, between the model prediction
f(x; θ) and the observation y on the training data. The error measure can be any bounded vector
norm, while L1 and L2 norms are the most common ones.

Regression in matrix form: For better exposition, we introduce the matrix form of the regression
on the training data set. Given a training set, we can define the design matrix X to be the m by n
matrix (m by n+ 1 if we include the intercept term) that contains the training inputs as its rows,

X =


— (x1)T —
— (x2)T —

...
— (xm)T —

 . (3)

Similarly, we can define the output vector, which contains all the target values from the training set,

Y =


y1

y2

...
ym

 . (4)

With the definition above, we can easily write down the model prediction on the training data set as

Ỹ = f(X; θ) = Xθ, (5)

thus the difference can be measured as

J = ‖Xθ − Y ‖p. (6)

If we choose the L2 norm as the error measure, then the regression problem can be stated as an
optimization problem 2,

θ∗ = arg min
θ

‖Xθ − Y ‖2

= arg min
θ

1

2
‖Xθ − Y ‖22

= arg min
θ

1

2
(Xθ − Y)T (Xθ − Y)

= arg min
θ

1

2

m∑
i=1

(θTxi − yi)2

= arg min
θ

J(θ).

(7)

2arg max, defined as the arguments of the maxima, are the points in the domain of some function at which the
function values are maximized, i.e., arg max

θ
J(θ) returns the maxima points θ∗ of J(θ). Similarly, arg min

θ
returns the

minima points of the function

3

Here J(θ) is often called objective function or loss function, cost function. Since J takes the form
of sum of squared error, this problem is also called Ordinary Least Squares (OLS) regression.

If instead we choose the L1 norm as the error measure, we arrive at

θ∗ = arg min
θ

‖Xθ − Y ‖1

= arg min
θ

∑
i

|θTxi − yi|

= arg min
θ

J(θ),

(8)

here, the cost function takes the form of the sum of absolute deviation of the prediction, thus it’s called
Least Absolute Deviations (LAD) regression. Ordinary Least Squares regression is more commonly
used in practice, mainly because of its nicer math properties, e.g., differentiable, efficient vectorized
computation. However, Ordinary Least Squares is not as robust as Least Absolute Deviations when
there is noise or outliers (bad data, measurement error), see Section 2.4 for details.

Linear regression in a probabilistic point of view: Assume the targets and inputs are related
via our regression model and an error term,

yi = θTxi + εi. (9)

Let us further assume that the εi are distributed IID (independently and identically distributed)
according to a Gaussian distribution (also called a Normal distribution) with mean zero and variance
σ2, i.e., ε ∼ N (0, σ2). Then Equation 9 implies that yi is also from a Gaussian distribution but with
mean as θTxi and variance as σ2, i.e., yi ∼ N (θTxi, σ2). We should note that this distribution is a
conditional distribution given the observation of xi, and the distribution is parametrized by θ. More
precisely we should say yi|xi; θ ∼ N (θTxi, σ2). Then given the observation of xi, the probability of
observing yi as the output conditioned on the inputs can be written as

p(yi|xi; θ) =
1√
2πσ

exp

(
− (yi − θTxi)2

2σ2

)
. (10)

Based on the independence assumption, the probability (likelihood) of observing outputs vector Y
given the inputs X in the entire training set is

p(Y |X; θ) =

m∏
i=1

p(yi|xi; θ). (11)

Note this quantity only depends on θ given a fixed training set, we often denote it as the likelihood
function L(θ),

L(θ) = p(Y |X; θ) =

m∏
i=1

p(yi|xi; θ)

=

m∏
i=1

1√
2πσ

exp

(
(yi − θTxi)2

2σ2

)
.

(12)

In probabilistic point of view, regression process is to find the most likely model conditional on what has
been observed. Or conversely, the observed data on the best model should have the highest probability,
so that we should choose the model parameters θ to maximize the likelihood function, which is called
the maximum likelihood estimation (MLE).

Since the exponential function is a little hard to maximize, we instead maximize the logarithm of
the likelihood function, `(θ) = log(L(θ)). These two maximization problems are equivalent since `(θ)

4

is a strictly increase function of L(θ). Then the regression problem can be written as,

θ∗ = arg max
θ

`(θ)

= arg max
θ

log(L(θ))

= arg max
θ

[
m log(

1√
2πσ

) +

m∑
i=1

− (yi − θTxi)2

2σ2

]

= arg max
θ

m∑
i=1

− (yi − θTxi)2

2σ2

= arg min
θ

1

2

m∑
i=1

(yi − θTxi)2

σ2

= arg min
θ

1

2

m∑
i=1

(yi − θTxi)2 =⇒ OLS regression

(13)

Here, we derive the OLS regression with a probabilistic point of view, by assuming the error of the
regression model is in a Gaussian distribution. This assumption is not perfect but in general works
pretty well in practice, since many error behaves like Gaussian distributed noise. Alternatively we can
also assume the error obeys a Laplace distribution with zero mean and diversity b,

p(ε) =
1

2b
exp

(
−|ε|
b

)
(14)

then we can also derive the LAD regression with MLE.

2.2 Solving linear regression via optimization

As the regression problem is formulated in Section 2.1 as an optimization problem, it can be solved with
any optimization algorithm. However, gradient-based optimization algorithm is preferred in practice
since the gradient of the objective (loss) function is readily available. For example in the steepest
descent algorithm, we update the parameters along the opposite direction of the objective gradient,

θ = θ − α∇J(θ), (15)

where α is the update step length or often called learning rate, which can be determined by line
search or can be specified by the user (use a constant or slowly decreasing rate).

Here we look at the OLS regression for instance, since it’s gradient is analytical and easy to compute,
that’s also why it’s more widely used in practice. And start even simpler, let’s consider just one data
pair from the training set, (xi, yi),

∇J i(θ) =
∂

∂θ

(
1

2
(θTxi − yi)2

)
= (θTxi − yi︸ ︷︷ ︸

scalar

) xi︸︷︷︸
vector

.
(16)

5

Then the gradient of the loss function is just the sum of the gradient caused by each data pair,

∇J(θ) =
∂

∂θ

(
1

2

m∑
i=1

(θTxi − yi)2
)

=

m∑
i=1

∂

∂θ

(
1

2
(θTxi − yi)2

)

=

m∑
i=1

(θTxi − yi)xi

=

m∑
i=1

∇iJ(θ).

(17)

Just as before, we can also write this down in a matrix form,

∇J(θ) =
∂J(θ)

∂θ

=
∂

∂θ

1

2
(Xθ − Y)T (Xθ − Y)

=
∂

∂θ

1

2
(θTXTXθ − 2θTXTY + Y TY)

= XTXθ −XTY.

(18)

After getting the gradient of the loss function, we can simply get the steepest descent algorithm, also
called Batch Gradient Descent (BGD) sometimes, as shown in Algorithm 1. In this algorithm, we

Algorithm 1 Batch Gradiecnt Descent

θ = θ0 initialization
if not converge then
∇J(θ) = 0
for i = 1:m do
∇J(θ) = ∇J(θ) + (θTxi − yi)xi =⇒ ∇J(θ) = XTXθ −XTY

end for
θ = θ − α∇J(θ)

end if

loop over the entire data set to get the gradient of the loss function, which requires O(mn) operations.
This can be very expensive and memory inefficient when we have a very big data set, i.e. when m is
huge (when we talking about big data). Instead of updating the parameters after going through all
the examples in the training set, we can learn on the fly by looking at several samples or even just
one single data pair. These optimization approaches fall into the category of stochastic gradient
descent algorithms, which are shown in Algorithm 2-3. Although the name sounds fancy, the actual
implementation is fairly easy.

Instead of scanning through the entire training set and then make a single update step, stochastic
gradient descent can start making progress right away with a single sample (operationO(n) per update)
or a mini-batch of the samples (operations O(mbn) per update), and continues to make progress with
each example (mini-batch) it looks at. Therefore, stochastic gradient descent often gets “close” to
the minimum much faster than batch gradient descent. However, it may never “converge” to the
minimum, and the parameters θ will keep oscillating around the minimum of J(θ) as the gradient
is just based on one example at each step and can be very noisy (mini-batch smooths the gradient),
so as the optimization; but in practice most of the values near the minimum will be good enough.
For example, think about two-dimensional regression (n = 2), in which we want to fit a straight line.
Theoretically, we only need two data points to determine the slope and the intercept (in practice never

6

Algorithm 2 Stochastic Gradient Descent (Look at one sample at a time)

θ = θ0 initialization
if not converge then

Randomly shuffle examples in the training set =⇒ where stochastic comes in
for i = 1:m do
∇J(θ) = (θTxi − yi)xi
θ = θ − α∇J(θ)

end for
end if

Algorithm 3 Mini-Batch Stochastic Gradient Descent (Look at mb samples at a time)

θ = θ0 initialization
Pick batch size mb, normally m is dividable by mb

if not converge then
Randomly shuffle examples in the training set =⇒ where stochastic comes in
∇J(θ) = 0; l = 1
while l <= m do

for i = l : l +mb − 1 do
∇J(θ) = ∇J(θ) + (θTxi − yi)xi

end for
θ = θ − α∇J(θ)
l = l +mb − 1

end while
end if

do that since the data is not perfect, noise), mini-batch of 2 is perfect for gradient calculations, only
few iterations of stochastic gradient descent are required. In practice, stochastic gradient descent is
often preferred over batch gradient descent on large scale problem or on large data set.

An example of linear regression on the thin-airfoil data Figure 1 is shown in Figure 4, BGD and
SGD are both implemented, and the data is sampled from y = 0x0 + 2πx1 + ε, where ε is a Gaussian
noise with zero mean and some variance.

2.3 Solving Least Squares Regression via Normal Equation

The ultimate goal of the gradient descent algorithm is to drive the gradient of the loss function to
zero, which is essentially a stationary point of the objective function, but is this a maxima or minima?
and is the solution unique? These question can be answered by the normal equation, which can be
obtained by setting the gradient of the loss function to be zero (this is what the optimization does
ideally).

∇J(θ) = XTXθ −XTY = 0 =⇒ XT (Xθ − Y) = 0 (19)

This equation is called normal equation because it means the difference between the model prediction
and the data Xθ−Y has to be normal to the span of the column space of X (or row space of XT). If X
has a complete column space (all the features xj are linearly independent), then XTX is a symmetric
positive definite (SPD) matrix (invertible), so there is an unique solution of Equation 19,

θ∗ = (XTX)−1XTY. (20)

7

3 4 5 6 7 8 9 10 11

-3

-2

-1

0

1

2

3

-1

0

1

2

3

4

5

6

7

8

3 4 5 6 7 8 9 10 11

-3

-2

-1

0

1

2

3

-1

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

0 1000 2000 3000 4000 5000 6000
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

Figure 4: Comparison of BGD and SGD on a two-dimensional regression problem

8

But is this solution a minima or maxima? We can expand the loss function J(θ) at θ∗ with a Taylor
series,

J(θ∗ + δθ) = J(θ∗) + (∇J(θ∗)︸ ︷︷ ︸
=0

)T δθ +
1

2
δθT ∇2J(θ∗ + βδθ)︸ ︷︷ ︸

Hessian matrix, XTX

δθ, β is a scalar, 0 ≤ β ≤ 1

= J(θ∗) + δθTXTXδθ

= J(θ∗) + (Xδθ)T (Xδθ)

= J(θ∗) + ‖Xδθ‖22
≥ J(θ∗) if XTX is SPD, strict inequality

(21)

Equation 21 means starting from the θ∗, no matter in which direction we perturb the parameters δθ,
we will increase the loss function. Therefore we can know the solution of the normal equation θ∗ is a
minima, and also because it’s a unique solution, it’s the global minima of our optimization problem.

Solving normal equation involves a matrix (n× n, n is the number of features, not the number of
data samples m). When we have a very large model or a very big data set, the matrix inversion can
be very expensive, and XTX can be very ill-conditioned. Thus, the optimization approach is more
general in practice.

2.4 Robust Linear Regression

In the OLS regression, the sample data pairs that contribute most to the loss function and also the
gradient are those which are furthest to the true model. What does this implies? Imagine we are using
SGD algorithm to do the regression and assume we start at the true parameters (perfect initial guess),
when we look at one sample exactly at the true model line, this sample does not produce any loss, so
no gradient can be measured. However, if we are at a point which is far away from the true model
line (noise in the data or measurement error), the loss and the gradient are very large which will in
fact affect the parameters a lot in the gradient descent update. This can be worse if we have several
completely wrong data in our training set. In these scenarios, how can we make the regression more
robust? There are two options available.

• Locally weighted regression, the points away from the model are assigned with smaller weights.
One possible weights can be

wi =
1√

1 + (ri)2

ri = θTxi − yi
(22)

Then the OLS can be written as

θ∗ = arg min
θ

1

2

m∑
i=1

wi(yi − θTxi)2 (23)

• Choose different loss function, OLS is not robust since the error gets squared, loss increases
squarely as the distance from the model increases. LAD regression is more robust as the absolute
deviation function only linearly depends on the deviation. More general, for any loss function,
we can define our regression model as

arg min
θ

1

2

m∑
i=1

ρ(di), di = θTxi − yi, is the model deviation (24)

Several different loss function ρ(d) are compared in Figure 5.

9

-8 -6 -4 -2 0 2 4 6 8
0

10

20

30

40

50

60

70

Square Loss

Absolute Deviation Loss

-8 -6 -4 -2 0 2 4 6 8
0

10

20

30

40

50

60

70

Square Loss

Huber Loss

-8 -6 -4 -2 0 2 4 6 8
0

10

20

30

40

50

60

70

Square Loss

Biweight Loss

Figure 5: Several robust regression loss function compared to squared error

2.5 Under-fitting, Over-fitting and Regularization

Given the data, we can either solve the normal equation or the optimization problem to find the optimal
parameters (build the model), but one may ask is the model good? One way is to test your model on
unseen data, which is not used to train your model. If the model works well (predict accurate outputs)
on the testing data set, most likely we’ve got a good model. But sometimes even before testing on
the test data, we can have an idea of how good the model is by just looking at our model and data.
Figure 6 gives an idea how the models may look like in practice, the data is still the airfoil data, but
this time we have linear region and nonlinear region (stall, flow separation). The middle model is the
best model here since it captures the main relations between the input and output while keep the
model simple. The left model is a straight line (only two parameters, slope and intercept), which is too
simple to be able to represent the relation, we call this situation under-fitting. For the model on the
right, we see it can perfectly match all the training data, is this good? We can memorize all the data
we have seen, but learn nothing from that. This case is often referred as over-fitting, which means the
model is too complex (redundant parameters), paying too much on the training set while generalize
badly (can’t predict the output well) on the testing set. This is very common in practice, as we often
tend to pick a complex model (don’t know how many features may affect the output, often we choose
as many candidate features as we can) when we do the regression.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Data

Regresssion model

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Data

Regresssion model

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Data

Regresssion model

Figure 6: Three models, left one under-fitted the data, right one over-fitted the data

So how can we avoid over-fitting in practice, in a more automated way? We add regularization
terms in the loss function.

J(θ) =
1

2
‖Xθ − Y ‖22 + λ‖θ‖22 (25)

where λ is the regularization factor, when λ = 0, we recover the OLS regression. The intuition is
that, we do not want the parameters θ to have value in all its components, so we penalize it when
big values appear in θ. In a probabilistic point of view, we are putting some constraints on the
parameters θ, which can be from empirical knowledge or valid assumptions. When we estimate the
parameters, we have a prior probability of θ, which may be the mean of θ is close to zero. Then
instead of estimating the parameters solely based on the likelihood (data/observations), we also take
our experience (prior probability) into account, this is called maximum a posterior estimates

10

(MAP). Similarly, we can put L1 norm of θ as the regularization. The regularization with L2 norm
is also called Ridge Regression, and L1 regularization is often called Least Absolute Shrinkage
and Selection Operator, LASSO.

In practice, LASSO is often of more interest as the built-in sparsity in the model, which means
by finding the model we also find the most important features that affect the output. Why does
this happen? This is because L1 norm prefers one large entry with all zeros to all small values. For
example, if we consider two vector θ1 = [4, 3] and θ2 = [6, 0], we have ‖θ1‖2 ≤ ‖θ2‖2 and ‖θ1‖1 ≥ ‖θ2‖1.
Application: discovering the governing equations (link to the paper), as shown in Figure 7.

Figure 7: Using sparse regression (LASSO) to discover unknown governing equation, figure from [3]

3 Generalized Linear Regression

Back to a general regression problem, we want to find a map to best describe the relation between our
input features and output target, y = f(x; θ), which is parametrized by a set of parameters θ. In linear
regression, we assume the form of f as linear, which is not always the case. If we want a model with
better approximation power than linear regression, it should be able to mimic nonlinear phenomenons.
In this case, we need to specify a more complex form of f(x; θ). Build on linear model, we can compose
it with some nonlinear function to get a more complicated (powerful) model. For example,

y = g(h; θ) = θTh; dim(θ) = l × 1

h = σ(z) =
1

1 + exp(−z)
; =⇒ Nonlinear activation,dim(h) = dim(z) = l × 1

z = `(x; Θ) = ΘTx; dim(Θ) = l × n, dim(x) = n× 1,dim(z) = l × 1

(26)

Then the final model can be written as,

y = g(σ(`(x)); θ,Θ) = f(x; θ,Θ) (27)

By optimizing the parameters θ and Θ, we get a simple three-layer neural network! The structure
is shown in Figure 8. The hidden layer structure in Figure 8 can be stacked to get deeper and deeper
neural networks, which is widely used nowadays in regression and classification problems.

11

https://doi.org/10.1126/sciadv.1602614

Input layer

Hidden layer Output layer

Figure 8: An example of simple neural networks

References

[1] Wikipedia. Regression analysis. https://en.wikipedia.org/wiki/Regression_analysis.

[2] Andrew Ng and John Duchi. Cs229: Machine learning. Standford University Lecture, 2000.

[3] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven discovery
of partial differential equations. Science Advances, 3(4), 2017.

12

https://en.wikipedia.org/wiki/Regression_analysis

	Introduction
	Regression Model
	Linear Regression
	Solving linear regression via optimization
	Solving Least Squares Regression via Normal Equation
	Robust Linear Regression
	Under-fitting, Over-fitting and Regularization

	Generalized Linear Regression

